Logic for representing operators in state in various bases.
TODO:
Represent the quantum expression in the given basis.
In quantum mechanics abstract states and operators can be represented in various basis sets. Under this operation the follow transforms happen:
This function is the top-level interface for this action.
This function walks the sympy expression tree looking for QExpr instances that have a _represent method. This method is then called and the object is replaced by the representation returned by this method. By default, the _represent method will dispatch to other methods that handle the representation logic for a particular basis set. The naming convention for these methods is the following:
def _represent_FooBasis(self, e, basis, **options)
This function will have the logic for representing instances of its class in the basis set having a class named FooBasis.
Parameters : | expr : Expr
basis : Operator, basis set
options : dict
|
---|---|
Returns : | e : Expr
|
Examples
Here we subclass Operator and Ket to create the z-spin operator and its spin 1/2 up eigenstate. By definining the _represent_SzOp method, the ket can be represented in the z-spin basis.
>>> from sympy.physics.quantum import Operator, represent, Ket
>>> from sympy import Matrix
>>> class SzUpKet(Ket):
... def _represent_SzOp(self, basis, **options):
... return Matrix([1,0])
...
>>> class SzOp(Operator):
... pass
...
>>> sz = SzOp('Sz')
>>> up = SzUpKet('up')
>>> represent(up, basis=sz)
Matrix([
[1],
[0]])
Here we see an example of representations in a continuous basis. We see that the result of representing various combinations of cartesian position operators and kets give us continuous expressions involving DiracDelta functions.
>>> from sympy.physics.quantum.cartesian import XOp, XKet, XBra
>>> X = XOp()
>>> x = XKet()
>>> y = XBra('y')
>>> represent(X*x)
x*DiracDelta(x - x_2)
>>> represent(X*x*y)
x*DiracDelta(x - x_3)*DiracDelta(x_1 - y)
Returns an innerproduct like representation (e.g. <x'|x>) for the given state.
Attempts to calculate inner product with a bra from the specified basis. Should only be passed an instance of KetBase or BraBase
Parameters : | expr : KetBase or BraBase
|
---|
Examples
>>> from sympy.physics.quantum.represent import rep_innerproduct
>>> from sympy.physics.quantum.cartesian import XOp, XKet, PxOp, PxKet
>>> rep_innerproduct(XKet())
DiracDelta(x - x_1)
>>> rep_innerproduct(XKet(), basis=PxOp())
sqrt(2)*exp(-I*px_1*x/hbar)/(2*sqrt(hbar)*sqrt(pi))
>>> rep_innerproduct(PxKet(), basis=XOp())
sqrt(2)*exp(I*px*x_1/hbar)/(2*sqrt(hbar)*sqrt(pi))
Returns an <x'|A|x> type representation for the given operator.
Parameters : | expr : Operator
|
---|
Examples
>>> from sympy.physics.quantum.cartesian import XOp, XKet, PxOp, PxKet
>>> from sympy.physics.quantum.represent import rep_expectation
>>> rep_expectation(XOp())
x_1*DiracDelta(x_1 - x_2)
>>> rep_expectation(XOp(), basis=PxOp())
<px_2|*X*|px_1>
>>> rep_expectation(XOp(), basis=PxKet())
<px_2|*X*|px_1>
Returns the result of integrating over any unities (|x><x|) in the given expression. Intended for integrating over the result of representations in continuous bases.
This function integrates over any unities that may have been inserted into the quantum expression and returns the result. It uses the interval of the Hilbert space of the basis state passed to it in order to figure out the limits of integration. The unities option must be specified for this to work.
Note: This is mostly used internally by represent(). Examples are given merely to show the use cases.
Parameters : | orig_expr : quantum expression
result: Expr :
|
---|
Examples
>>> from sympy import symbols, DiracDelta
>>> from sympy.physics.quantum.represent import integrate_result
>>> from sympy.physics.quantum.cartesian import XOp, XKet
>>> x_ket = XKet()
>>> X_op = XOp()
>>> x, x_1, x_2 = symbols('x, x_1, x_2')
>>> integrate_result(X_op*x_ket, x*DiracDelta(x-x_1)*DiracDelta(x_1-x_2))
x*DiracDelta(x - x_1)*DiracDelta(x_1 - x_2)
>>> integrate_result(X_op*x_ket, x*DiracDelta(x-x_1)*DiracDelta(x_1-x_2),
... unities=[1])
x*DiracDelta(x - x_2)
Returns a basis state instance corresponding to the basis specified in options=s. If no basis is specified, the function tries to form a default basis state of the given expression.
There are three behaviors:
If the basis cannot be mapped, then it is not changed.
This will be called from within represent, and represent will only pass QExpr’s.
TODO (?): Support for Muls and other types of expressions?
Parameters : | expr : Operator or StateBase
|
---|
Examples
>>> from sympy.physics.quantum.represent import get_basis
>>> from sympy.physics.quantum.cartesian import XOp, XKet, PxOp, PxKet
>>> x = XKet()
>>> X = XOp()
>>> get_basis(x)
|x>
>>> get_basis(X)
|x>
>>> get_basis(x, basis=PxOp())
|px>
>>> get_basis(x, basis=PxKet)
|px>
Returns instances of the given state with dummy indices appended
Operates in two different modes:
Tries to call state._enumerate_state. If this fails, returns an empty list
Parameters : | args : list
|
---|
Examples
>>> from sympy.physics.quantum.cartesian import XBra, XKet
>>> from sympy.physics.quantum.represent import enumerate_states
>>> test = XKet('foo')
>>> enumerate_states(test, 1, 3)
[|foo_1>, |foo_2>, |foo_3>]
>>> test2 = XBra('bar')
>>> enumerate_states(test2, [4, 5, 10])
[<bar_4|, <bar_5|, <bar_10|]