Known matrices related to physics
Returns a Dirac gamma matrix \(\gamma^\mu\) in the standard (Dirac) representation.
If you want \(\gamma_\mu\), use gamma(mu, True).
We use a convention:
\(\gamma^5 = i \cdot \gamma^0 \cdot \gamma^1 \cdot \gamma^2 \cdot \gamma^3\)
\(\gamma_5 = i \cdot \gamma_0 \cdot \gamma_1 \cdot \gamma_2 \cdot \gamma_3 = - \gamma^5\)
References
[R276] | http://en.wikipedia.org/wiki/Gamma_matrices |
Examples
>>> from sympy.physics.matrices import mgamma
>>> mgamma(1)
Matrix([
[ 0, 0, 0, 1],
[ 0, 0, 1, 0],
[ 0, -1, 0, 0],
[-1, 0, 0, 0]])
Returns a Pauli matrix \(\sigma_i\) with \(i=1,2,3\)
References
[R277] | http://en.wikipedia.org/wiki/Pauli_matrices |
Examples
>>> from sympy.physics.matrices import msigma
>>> msigma(1)
Matrix([
[0, 1],
[1, 0]])
Returns the Parallel Axis Theorem matrix to translate the inertia matrix a distance of \((dx, dy, dz)\) for a body of mass m.
Examples
To translate a body having a mass of 2 units a distance of 1 unit along the \(x\)-axis we get:
>>> from sympy.physics.matrices import pat_matrix
>>> pat_matrix(2, 1, 0, 0)
Matrix([
[0, 0, 0],
[0, 2, 0],
[0, 0, 2]])