Source code for sympy.logic.boolalg

"""
Boolean algebra module for SymPy
"""
from __future__ import print_function, division

from collections import defaultdict
from itertools import product

from sympy.core.basic import Basic
from sympy.core.cache import cacheit
from sympy.core.numbers import Number
from sympy.core.decorators import deprecated
from sympy.core.operations import LatticeOp, AssocOp
from sympy.core.function import Application
from sympy.core.compatibility import ordered, xrange, with_metaclass
from sympy.core.sympify import converter, _sympify, sympify
from sympy.core.singleton import Singleton, S


class Boolean(Basic):
    """A boolean object is an object for which logic operations make sense."""

    __slots__ = []

    def __and__(self, other):
        """Overloading for & operator"""
        return And(self, other)

    __rand__ = __and__

    def __or__(self, other):
        """Overloading for |"""
        return Or(self, other)

    __ror__ = __or__

    def __invert__(self):
        """Overloading for ~"""
        return Not(self)

    def __rshift__(self, other):
        """Overloading for >>"""
        return Implies(self, other)

    def __lshift__(self, other):
        """Overloading for <<"""
        return Implies(other, self)

    __rrshift__ = __lshift__
    __rlshift__ = __rshift__

    def __xor__(self, other):
        return Xor(self, other)

    __rxor__ = __xor__

# Developer note: There is liable to be some confusion as to when True should
# be used and when S.true should be used in various contexts throughout SymPy.
# An important thing to remember is that sympify(True) returns S.true.  This
# means that for the most part, you can just use True and it will
# automatically be converted to S.true when necessary, similar to how you can
# generally use 1 instead of S.One.

# The rule of thumb is:

#   "If the boolean in question can be replaced by an arbitrary symbolic
#   Boolean, like Or(x, y) or x > 1, use S.true. Otherwise, use True"

# In other words, use S.true only on those contexts where the boolean is being
# used as a symbolic representation of truth.  For example, if the object ends
# up in the .args of any expression, then it must necessarily be S.true
# instead of True, as elements of .args must be Basic.  On the other hand, ==
# is not a symbolic operation in SymPy, since it always returns True or False,
# and does so in terms of structural equality rather than mathematical, so it
# should return True. The assumptions system should use True and False. Aside
# from not satisfying the above rule of thumb, the assumptions system uses a
# three-valued logic (True, False, None), whereas S.true and S.false represent
# a two-valued logic.  When it doubt, use True.

# 2. "S.true == True" is True.

# While "S.true is True" is False, "S.true == True" is True, so if there is
# any doubt over whether a function or expression will return S.true or True,
# just use "==" instead of "is" to do the comparison, and it will work in
# either case.  Finally, for boolean flags, it's better to just use "if x"
# instead of "if x is True". To quote PEP 8:

#     Don't compare boolean values to True or False using ==.

#       Yes:   if greeting:
#       No:    if greeting == True:
#       Worse: if greeting is True:

class BooleanAtom(Boolean):
    """
    Base class of BooleanTrue and BooleanFalse.
    """

[docs]class BooleanTrue(with_metaclass(Singleton, BooleanAtom)): """ SymPy version of True. The instances of this class are singletonized and can be accessed via S.true. This is the SymPy version of True, for use in the logic module. The primary advantage of using true instead of True is that shorthand boolean operations like ~ and >> will work as expected on this class, whereas with True they act bitwise on 1. Functions in the logic module will return this class when they evaluate to true. Examples ======== >>> from sympy import sympify, true, Or >>> sympify(True) True >>> ~true False >>> ~True -2 >>> Or(True, False) True See Also ======== sympy.logic.boolalg.BooleanFalse """ def __nonzero__(self): return True __bool__ = __nonzero__ def __hash__(self): return hash(True) def as_set(self): """ Rewrite logic operators and relationals in terms of real sets. Examples ======== >>> from sympy import true >>> true.as_set() UniversalSet() """ return S.UniversalSet
[docs]class BooleanFalse(with_metaclass(Singleton, BooleanAtom)): """ SymPy version of False. The instances of this class are singletonized and can be accessed via S.false. This is the SymPy version of False, for use in the logic module. The primary advantage of using false instead of False is that shorthand boolean operations like ~ and >> will work as expected on this class, whereas with False they act bitwise on 0. Functions in the logic module will return this class when they evaluate to false. Examples ======== >>> from sympy import sympify, false, Or, true >>> sympify(False) False >>> false >> false True >>> False >> False 0 >>> Or(True, False) True See Also ======== sympy.logic.boolalg.BooleanTrue """ def __nonzero__(self): return False __bool__ = __nonzero__ def __hash__(self): return hash(False) def as_set(self): """ Rewrite logic operators and relationals in terms of real sets. Examples ======== >>> from sympy import false >>> false.as_set() EmptySet() """ from sympy.core.sets import EmptySet return EmptySet()
true = BooleanTrue() false = BooleanFalse() # We want S.true and S.false to work, rather than S.BooleanTrue and # S.BooleanFalse, but making the class and instance names the same causes some # major issues (like the inability to import the class directly from this # file). S.true = true S.false = false converter[bool] = lambda x: S.true if x else S.false class BooleanFunction(Application, Boolean): """Boolean function is a function that lives in a boolean space It is used as base class for And, Or, Not, etc. """ is_Boolean = True def __call__(self, *args): return self.func(*[arg(*args) for arg in self.args]) def _eval_simplify(self, ratio, measure): return simplify_logic(self)
[docs]class And(LatticeOp, BooleanFunction): """ Logical AND function. It evaluates its arguments in order, giving False immediately if any of them are False, and True if they are all True. Examples ======== >>> from sympy.core import symbols >>> from sympy.abc import x, y >>> from sympy.logic.boolalg import And >>> x & y And(x, y) Notes ===== The ``&`` operator is provided as a convenience, but note that its use here is different from its normal use in Python, which is bitwise and. Hence, ``And(a, b)`` and ``a & b`` will return different things if ``a`` and ``b`` are integers. >>> And(x, y).subs(x, 1) y """ zero = false identity = true nargs = None @classmethod def _new_args_filter(cls, args): newargs = [] for x in args: if isinstance(x, Number) or x in (0, 1): newargs.append(True if x else False) else: newargs.append(x) return LatticeOp._new_args_filter(newargs, And) def as_set(self): """ Rewrite logic operators and relationals in terms of real sets. Examples ======== >>> from sympy import And, Symbol >>> x = Symbol('x', real=True) >>> And(x<2, x>-2).as_set() (-2, 2) """ from sympy.core.sets import Intersection if len(self.free_symbols) == 1: return Intersection(*[arg.as_set() for arg in self.args]) else: raise NotImplementedError("Sorry, And.as_set has not yet been" " implemented for multivariate" " expressions")
[docs]class Or(LatticeOp, BooleanFunction): """ Logical OR function It evaluates its arguments in order, giving True immediately if any of them are True, and False if they are all False. Examples ======== >>> from sympy.core import symbols >>> from sympy.abc import x, y >>> from sympy.logic.boolalg import Or >>> x | y Or(x, y) Notes ===== The ``|`` operator is provided as a convenience, but note that its use here is different from its normal use in Python, which is bitwise or. Hence, ``Or(a, b)`` and ``a | b`` will return different things if ``a`` and ``b`` are integers. >>> Or(x, y).subs(x, 0) y """ zero = true identity = false @classmethod def _new_args_filter(cls, args): newargs = [] for x in args: if isinstance(x, Number) or x in (0, 1): newargs.append(True if x else False) else: newargs.append(x) return LatticeOp._new_args_filter(newargs, Or) def as_set(self): """ Rewrite logic operators and relationals in terms of real sets. Examples ======== >>> from sympy import Or, Symbol >>> x = Symbol('x', real=True) >>> Or(x>2, x<-2).as_set() (-oo, -2) U (2, oo) """ from sympy.core.sets import Union if len(self.free_symbols) == 1: return Union(*[arg.as_set() for arg in self.args]) else: raise NotImplementedError("Sorry, Or.as_set has not yet been" " implemented for multivariate" " expressions")
[docs]class Not(BooleanFunction): """ Logical Not function (negation) Returns True if the statement is False Returns False if the statement is True Examples ======== >>> from sympy.logic.boolalg import Not, And, Or >>> from sympy.abc import x >>> Not(True) False >>> Not(False) True >>> Not(And(True, False)) True >>> Not(Or(True, False)) False >>> Not(And(And(True, x), Or(x, False))) Not(x) >>> ~x Not(x) Notes ===== - De Morgan rules are applied automatically. - The ``~`` operator is provided as a convenience, but note that its use here is different from its normal use in Python, which is bitwise not. In particular, ``~a`` and ``Not(a)`` will be different if ``a`` is an integer. Furthermore, since bools in Python subclass from ``int``, ``~True`` is the same as ``~1`` which is ``-2``, which has a boolean value of True. To avoid this issue, use the SymPy boolean types ``true`` and ``false``. >>> from sympy import true >>> ~True -2 >>> ~true False """ is_Not = True @classmethod def eval(cls, arg): if isinstance(arg, Number) or arg in (True, False): return false if arg else true # apply De Morgan Rules if arg.func is And: return Or(*[Not(a) for a in arg.args]) if arg.func is Or: return And(*[Not(a) for a in arg.args]) if arg.func is Not: return arg.args[0] def as_set(self): """ Rewrite logic operators and relationals in terms of real sets. Examples ======== >>> from sympy import Not, Symbol >>> x = Symbol('x', real=True) >>> Not(x>0).as_set() (-oo, 0] """ if len(self.free_symbols) == 1: return self.args[0].as_set().complement else: raise NotImplementedError("Sorry, Not.as_set has not yet been" " implemented for mutivariate" " expressions")
[docs]class Xor(BooleanFunction): """ Logical XOR (exclusive OR) function. Returns True if an odd number of the arguments are True and the rest are False. Returns False if an even number of the arguments are True and the rest are False. Examples ======== >>> from sympy.logic.boolalg import Xor >>> from sympy import symbols >>> x, y = symbols('x y') >>> Xor(True, False) True >>> Xor(True, True) False >>> Xor(True, False, True, True, False) True >>> Xor(True, False, True, False) False >>> x ^ y Or(And(Not(x), y), And(Not(y), x)) Notes ===== The ``^`` operator is provided as a convenience, but note that its use here is different from its normal use in Python, which is bitwise xor. In particular, ``a ^ b`` and ``Xor(a, b)`` will be different if ``a`` and ``b`` are integers. >>> Xor(x, y).subs(y, 0) x """ def __new__(cls, *args, **options): args = [_sympify(arg) for arg in args] argset = set(args) truecount = 0 for x in args: if isinstance(x, Number) or x in [True, False]: # Includes 0, 1 argset.discard(x) if x: truecount += 1 if len(argset) < 1: return true if truecount % 2 != 0 else false if truecount % 2 != 0: return Not(Xor(*argset)) _args = frozenset(argset) obj = super(Xor, cls).__new__(cls, *_args, **options) if isinstance(obj, Xor): obj._argset = _args return obj @property @cacheit def args(self): return tuple(ordered(self._argset)) @classmethod def eval(cls, *args): if not args: return false args = list(args) A = args.pop() while args: B = args.pop() A = Or(And(A, Not(B)), And(Not(A), B)) return A
[docs]class Nand(BooleanFunction): """ Logical NAND function. It evaluates its arguments in order, giving True immediately if any of them are False, and False if they are all True. Returns True if any of the arguments are False Returns False if all arguments are True Examples ======== >>> from sympy.logic.boolalg import Nand >>> from sympy import symbols >>> x, y = symbols('x y') >>> Nand(False, True) True >>> Nand(True, True) False >>> Nand(x, y) Or(Not(x), Not(y)) """ @classmethod def eval(cls, *args): return Not(And(*args))
[docs]class Nor(BooleanFunction): """ Logical NOR function. It evaluates its arguments in order, giving False immediately if any of them are True, and True if they are all False. Returns False if any argument is True Returns True if all arguments are False Examples ======== >>> from sympy.logic.boolalg import Nor >>> from sympy import symbols >>> x, y = symbols('x y') >>> Nor(True, False) False >>> Nor(True, True) False >>> Nor(False, True) False >>> Nor(False, False) True >>> Nor(x, y) And(Not(x), Not(y)) """ @classmethod def eval(cls, *args): return Not(Or(*args))
[docs]class Implies(BooleanFunction): """ Logical implication. A implies B is equivalent to !A v B Accepts two Boolean arguments; A and B. Returns False if A is True and B is False Returns True otherwise. Examples ======== >>> from sympy.logic.boolalg import Implies >>> from sympy import symbols >>> x, y = symbols('x y') >>> Implies(True, False) False >>> Implies(False, False) True >>> Implies(True, True) True >>> Implies(False, True) True >>> x >> y Implies(x, y) >>> y << x Implies(x, y) Notes ===== The ``>>`` and ``<<`` operators are provided as a convenience, but note that their use here is different from their normal use in Python, which is bit shifts. Hence, ``Implies(a, b)`` and ``a >> b`` will return different things if ``a`` and ``b`` are integers. In particular, since Python considers ``True`` and ``False`` to be integers, ``True >> True`` will be the same as ``1 >> 1``, i.e., 0, which has a truth value of False. To avoid this issue, use the SymPy objects ``true`` and ``false``. >>> from sympy import true, false >>> True >> False 1 >>> true >> false False """ @classmethod def eval(cls, *args): try: newargs = [] for x in args: if isinstance(x, Number) or x in (0, 1): newargs.append(True if x else False) else: newargs.append(x) A, B = newargs except ValueError: raise ValueError( "%d operand(s) used for an Implies " "(pairs are required): %s" % (len(args), str(args))) if A == True or A == False or B == True or B == False: return Or(Not(A), B) else: return Basic.__new__(cls, *args)
[docs]class Equivalent(BooleanFunction): """ Equivalence relation. Equivalent(A, B) is True iff A and B are both True or both False Returns True if all of the arguments are logically equivalent. Returns False otherwise. Examples ======== >>> from sympy.logic.boolalg import Equivalent, And >>> from sympy.abc import x, y >>> Equivalent(False, False, False) True >>> Equivalent(True, False, False) False >>> Equivalent(x, And(x, True)) True """ def __new__(cls, *args, **options): args = [_sympify(arg) for arg in args] argset = set(args) for x in args: if isinstance(x, Number) or x in [True, False]: # Includes 0, 1 argset.discard(x) argset.add(True if x else False) if len(argset) <= 1: return true if True in argset: argset.discard(True) return And(*argset) if False in argset: argset.discard(False) return Nor(*argset) _args = frozenset(argset) obj = super(Equivalent, cls).__new__(cls, _args) obj._argset = _args return obj @property @cacheit def args(self): return tuple(ordered(self._argset))
[docs]class ITE(BooleanFunction): """ If then else clause. ITE(A, B, C) evaluates and returns the result of B if A is true else it returns the result of C Examples ======== >>> from sympy.logic.boolalg import ITE, And, Xor, Or >>> from sympy.abc import x, y, z >>> ITE(True, False, True) False >>> ITE(Or(True, False), And(True, True), Xor(True, True)) True >>> ITE(x, y, z) Or(And(Not(x), z), And(x, y)) """ @classmethod def eval(cls, *args): args = list(args) if len(args) == 3: return Or(And(args[0], args[1]), And(Not(args[0]), args[2])) raise ValueError("ITE expects 3 arguments, but got %d: %s" % (len(args), str(args))) ### end class definitions. Some useful methods
def conjuncts(expr): """Return a list of the conjuncts in the expr s. Examples ======== >>> from sympy.logic.boolalg import conjuncts >>> from sympy.abc import A, B >>> conjuncts(A & B) frozenset([A, B]) >>> conjuncts(A | B) frozenset([Or(A, B)]) """ return And.make_args(expr) def disjuncts(expr): """Return a list of the disjuncts in the sentence s. Examples ======== >>> from sympy.logic.boolalg import disjuncts >>> from sympy.abc import A, B >>> disjuncts(A | B) frozenset([A, B]) >>> disjuncts(A & B) frozenset([And(A, B)]) """ return Or.make_args(expr) def distribute_and_over_or(expr): """ Given a sentence s consisting of conjunctions and disjunctions of literals, return an equivalent sentence in CNF. Examples ======== >>> from sympy.logic.boolalg import distribute_and_over_or, And, Or, Not >>> from sympy.abc import A, B, C >>> distribute_and_over_or(Or(A, And(Not(B), Not(C)))) And(Or(A, Not(B)), Or(A, Not(C))) """ return _distribute((expr, And, Or)) def distribute_or_over_and(expr): """ Given a sentence s consisting of conjunctions and disjunctions of literals, return an equivalent sentence in DNF. Note that the output is NOT simplified. Examples ======== >>> from sympy.logic.boolalg import distribute_or_over_and, And, Or, Not >>> from sympy.abc import A, B, C >>> distribute_or_over_and(And(Or(Not(A), B), C)) Or(And(B, C), And(C, Not(A))) """ return _distribute((expr, Or, And)) def _distribute(info): """ Distributes info[1] over info[2] with respect to info[0]. """ if info[0].func is info[2]: for arg in info[0].args: if arg.func is info[1]: conj = arg break else: return info[0] rest = info[2](*[a for a in info[0].args if a is not conj]) return info[1](*list(map(_distribute, [(info[2](c, rest), info[1], info[2]) for c in conj.args]))) elif info[0].func is info[1]: return info[1](*list(map(_distribute, [(x, info[1], info[2]) for x in info[0].args]))) else: return info[0]
[docs]def to_cnf(expr, simplify=False): """ Convert a propositional logical sentence s to conjunctive normal form. That is, of the form ((A | ~B | ...) & (B | C | ...) & ...) If simplify is True, the expr is evaluated to its simplest CNF form. Examples ======== >>> from sympy.logic.boolalg import to_cnf >>> from sympy.abc import A, B, D >>> to_cnf(~(A | B) | D) And(Or(D, Not(A)), Or(D, Not(B))) >>> to_cnf((A | B) & (A | ~A), True) Or(A, B) """ expr = sympify(expr) if not isinstance(expr, BooleanFunction): return expr if simplify: return simplify_logic(expr, 'cnf', True) # Don't convert unless we have to if is_cnf(expr): return expr expr = eliminate_implications(expr) return distribute_and_over_or(expr)
[docs]def to_dnf(expr, simplify=False): """ Convert a propositional logical sentence s to disjunctive normal form. That is, of the form ((A & ~B & ...) | (B & C & ...) | ...) If simplify is True, the expr is evaluated to its simplest DNF form. Examples ======== >>> from sympy.logic.boolalg import to_dnf >>> from sympy.abc import A, B, C >>> to_dnf(B & (A | C)) Or(And(A, B), And(B, C)) >>> to_dnf((A & B) | (A & ~B) | (B & C) | (~B & C), True) Or(A, C) """ expr = sympify(expr) if not isinstance(expr, BooleanFunction): return expr if simplify: return simplify_logic(expr, 'dnf', True) # Don't convert unless we have to if is_dnf(expr): return expr expr = eliminate_implications(expr) return distribute_or_over_and(expr)
[docs]def is_cnf(expr): """ Test whether or not an expression is in conjunctive normal form. Examples ======== >>> from sympy.logic.boolalg import is_cnf >>> from sympy.abc import A, B, C >>> is_cnf(A | B | C) True >>> is_cnf(A & B & C) True >>> is_cnf((A & B) | C) False """ return _is_form(expr, And, Or)
[docs]def is_dnf(expr): """ Test whether or not an expression is in disjunctive normal form. Examples ======== >>> from sympy.logic.boolalg import is_dnf >>> from sympy.abc import A, B, C >>> is_dnf(A | B | C) True >>> is_dnf(A & B & C) True >>> is_dnf((A & B) | C) True >>> is_dnf(A & (B | C)) False """ return _is_form(expr, Or, And)
def _is_form(expr, function1, function2): """ Test whether or not an expression is of the required form. """ expr = sympify(expr) # Special case of an Atom if expr.is_Atom: return True # Special case of a single expression of function2 if expr.func is function2: for lit in expr.args: if lit.func is Not: if not lit.args[0].is_Atom: return False else: if not lit.is_Atom: return False return True # Special case of a single negation if expr.func is Not: if not expr.args[0].is_Atom: return False if expr.func is not function1: return False for cls in expr.args: if cls.is_Atom: continue if cls.func is Not: if not cls.args[0].is_Atom: return False elif cls.func is not function2: return False for lit in cls.args: if lit.func is Not: if not lit.args[0].is_Atom: return False else: if not lit.is_Atom: return False return True def eliminate_implications(expr): """ Change >>, <<, and Equivalent into &, |, and ~. That is, return an expression that is equivalent to s, but has only &, |, and ~ as logical operators. Examples ======== >>> from sympy.logic.boolalg import Implies, Equivalent, \ eliminate_implications >>> from sympy.abc import A, B, C >>> eliminate_implications(Implies(A, B)) Or(B, Not(A)) >>> eliminate_implications(Equivalent(A, B)) And(Or(A, Not(B)), Or(B, Not(A))) """ expr = sympify(expr) if expr.is_Atom: return expr # (Atoms are unchanged.) args = list(map(eliminate_implications, expr.args)) if expr.func is Implies: a, b = args[0], args[-1] return (~a) | b elif expr.func is Equivalent: a, b = args[0], args[-1] return (a | Not(b)) & (b | Not(a)) else: return expr.func(*args) @deprecated( useinstead="sympify", issue=3451, deprecated_since_version="0.7.3") def compile_rule(s): """ Transforms a rule into a SymPy expression A rule is a string of the form "symbol1 & symbol2 | ..." Note: This function is deprecated. Use sympify() instead. """ import re return sympify(re.sub(r'([a-zA-Z_][a-zA-Z0-9_]*)', r'Symbol("\1")', s)) def to_int_repr(clauses, symbols): """ Takes clauses in CNF format and puts them into an integer representation. Examples ======== >>> from sympy.logic.boolalg import to_int_repr >>> from sympy.abc import x, y >>> to_int_repr([x | y, y], [x, y]) == [set([1, 2]), set([2])] True """ # Convert the symbol list into a dict symbols = dict(list(zip(symbols, list(xrange(1, len(symbols) + 1))))) def append_symbol(arg, symbols): if arg.func is Not: return -symbols[arg.args[0]] else: return symbols[arg] return [set(append_symbol(arg, symbols) for arg in Or.make_args(c)) for c in clauses] def _check_pair(minterm1, minterm2): """ Checks if a pair of minterms differs by only one bit. If yes, returns index, else returns -1. """ index = -1 for x, (i, j) in enumerate(zip(minterm1, minterm2)): if i != j: if index == -1: index = x else: return -1 return index def _convert_to_varsSOP(minterm, variables): """ Converts a term in the expansion of a function from binary to it's variable form (for SOP). """ temp = [] for i, m in enumerate(minterm): if m == 0: temp.append(Not(variables[i])) elif m == 1: temp.append(variables[i]) else: pass # ignore the 3s return And(*temp) def _convert_to_varsPOS(maxterm, variables): """ Converts a term in the expansion of a function from binary to it's variable form (for POS). """ temp = [] for i, m in enumerate(maxterm): if m == 1: temp.append(Not(variables[i])) elif m == 0: temp.append(variables[i]) else: pass # ignore the 3s return Or(*temp) def _simplified_pairs(terms): """ Reduces a set of minterms, if possible, to a simplified set of minterms with one less variable in the terms using QM method. """ simplified_terms = [] todo = list(range(len(terms))) for i, ti in enumerate(terms[:-1]): for j_i, tj in enumerate(terms[(i + 1):]): index = _check_pair(ti, tj) if index != -1: todo[i] = todo[j_i + i + 1] = None newterm = ti[:] newterm[index] = 3 if newterm not in simplified_terms: simplified_terms.append(newterm) simplified_terms.extend( [terms[i] for i in [_ for _ in todo if _ is not None]]) return simplified_terms def _compare_term(minterm, term): """ Return True if a binary term is satisfied by the given term. Used for recognizing prime implicants. """ for i, x in enumerate(term): if x != 3 and x != minterm[i]: return False return True def _rem_redundancy(l1, terms): """ After the truth table has been sufficiently simplified, use the prime implicant table method to recognize and eliminate redundant pairs, and return the essential arguments. """ essential = [] for x in terms: temporary = [] for y in l1: if _compare_term(x, y): temporary.append(y) if len(temporary) == 1: if temporary[0] not in essential: essential.append(temporary[0]) for x in terms: for y in essential: if _compare_term(x, y): break else: for z in l1: if _compare_term(x, z): if z not in essential: essential.append(z) break return essential
[docs]def SOPform(variables, minterms, dontcares=None): """ The SOPform function uses simplified_pairs and a redundant group- eliminating algorithm to convert the list of all input combos that generate '1' (the minterms) into the smallest Sum of Products form. The variables must be given as the first argument. Return a logical Or function (i.e., the "sum of products" or "SOP" form) that gives the desired outcome. If there are inputs that can be ignored, pass them as a list, too. The result will be one of the (perhaps many) functions that satisfy the conditions. Examples ======== >>> from sympy.logic import SOPform >>> minterms = [[0, 0, 0, 1], [0, 0, 1, 1], ... [0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 1, 1]] >>> dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]] >>> SOPform(['w','x','y','z'], minterms, dontcares) Or(And(Not(w), z), And(y, z)) References ========== .. [1] en.wikipedia.org/wiki/Quine-McCluskey_algorithm """ from sympy.core.symbol import Symbol variables = [sympify(v) for v in variables] if minterms == []: return false minterms = [list(i) for i in minterms] dontcares = [list(i) for i in (dontcares or [])] for d in dontcares: if d in minterms: raise ValueError('%s in minterms is also in dontcares' % d) old = None new = minterms + dontcares while new != old: old = new new = _simplified_pairs(old) essential = _rem_redundancy(new, minterms) return Or(*[_convert_to_varsSOP(x, variables) for x in essential])
[docs]def POSform(variables, minterms, dontcares=None): """ The POSform function uses simplified_pairs and a redundant-group eliminating algorithm to convert the list of all input combinations that generate '1' (the minterms) into the smallest Product of Sums form. The variables must be given as the first argument. Return a logical And function (i.e., the "product of sums" or "POS" form) that gives the desired outcome. If there are inputs that can be ignored, pass them as a list, too. The result will be one of the (perhaps many) functions that satisfy the conditions. Examples ======== >>> from sympy.logic import POSform >>> minterms = [[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1], ... [1, 0, 1, 1], [1, 1, 1, 1]] >>> dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]] >>> POSform(['w','x','y','z'], minterms, dontcares) And(Or(Not(w), y), z) References ========== .. [1] en.wikipedia.org/wiki/Quine-McCluskey_algorithm """ from sympy.core.symbol import Symbol variables = [sympify(v) for v in variables] if minterms == []: return false minterms = [list(i) for i in minterms] dontcares = [list(i) for i in (dontcares or [])] for d in dontcares: if d in minterms: raise ValueError('%s in minterms is also in dontcares' % d) maxterms = [] for t in product([0, 1], repeat=len(variables)): t = list(t) if (t not in minterms) and (t not in dontcares): maxterms.append(t) old = None new = maxterms + dontcares while new != old: old = new new = _simplified_pairs(old) essential = _rem_redundancy(new, maxterms) return And(*[_convert_to_varsPOS(x, variables) for x in essential])
def _find_predicates(expr): """Helper to find logical predicates in BooleanFunctions. A logical predicate is defined here as anything within a BooleanFunction that is not a BooleanFunction itself. """ if not isinstance(expr, BooleanFunction): return set([expr]) return set.union(*(_find_predicates(i) for i in expr.args))
[docs]def simplify_logic(expr, form=None, deep=True): """ This function simplifies a boolean function to its simplified version in SOP or POS form. The return type is an Or or And object in SymPy. Parameters ========== expr : string or boolean expression form : string ('cnf' or 'dnf') or None (default). If 'cnf' or 'dnf', the simplest expression in the corresponding normal form is returned; if None, the answer is returned according to the form with fewest args (in CNF by default). deep : boolean (default True) indicates whether to recursively simplify any non-boolean functions contained within the input. Examples ======== >>> from sympy.logic import simplify_logic >>> from sympy.abc import x, y, z >>> from sympy import S >>> b = '(~x & ~y & ~z) | ( ~x & ~y & z)' >>> simplify_logic(b) And(Not(x), Not(y)) >>> S(b) Or(And(Not(x), Not(y), Not(z)), And(Not(x), Not(y), z)) >>> simplify_logic(_) And(Not(x), Not(y)) """ if form == 'cnf' or form == 'dnf' or form is None: expr = sympify(expr) if not isinstance(expr, BooleanFunction): return expr variables = _find_predicates(expr) truthtable = [] for t in product([0, 1], repeat=len(variables)): t = list(t) if expr.xreplace(dict(zip(variables, t))) == True: truthtable.append(t) if deep: from sympy.simplify.simplify import simplify variables = [simplify(v) for v in variables] if form == 'dnf' or \ (form is None and len(truthtable) >= (2 ** (len(variables) - 1))): return SOPform(variables, truthtable) elif form == 'cnf' or form is None: return POSform(variables, truthtable) else: raise ValueError("form can be cnf or dnf only")
def _finger(eq): """ Assign a 5-item fingerprint to each symbol in the equation: [ # of times it appeared as a Symbol, # of times it appeared as a Not(symbol), # of times it appeared as a Symbol in an And or Or, # of times it appeared as a Not(Symbol) in an And or Or, sum of the number of arguments with which it appeared, counting Symbol as 1 and Not(Symbol) as 2 ] >>> from sympy.logic.boolalg import _finger as finger >>> from sympy import And, Or, Not >>> from sympy.abc import a, b, x, y >>> eq = Or(And(Not(y), a), And(Not(y), b), And(x, y)) >>> dict(finger(eq)) {(0, 0, 1, 0, 2): [x], (0, 0, 1, 0, 3): [a, b], (0, 0, 1, 2, 8): [y]} So y and x have unique fingerprints, but a and b do not. """ f = eq.free_symbols d = dict(list(zip(f, [[0] * 5 for fi in f]))) for a in eq.args: if a.is_Symbol: d[a][0] += 1 elif a.is_Not: d[a.args[0]][1] += 1 else: o = len(a.args) + sum(ai.func is Not for ai in a.args) for ai in a.args: if ai.is_Symbol: d[ai][2] += 1 d[ai][-1] += o else: d[ai.args[0]][3] += 1 d[ai.args[0]][-1] += o inv = defaultdict(list) for k, v in ordered(iter(d.items())): inv[tuple(v)].append(k) return inv
[docs]def bool_map(bool1, bool2): """ Return the simplified version of bool1, and the mapping of variables that makes the two expressions bool1 and bool2 represent the same logical behaviour for some correspondence between the variables of each. If more than one mappings of this sort exist, one of them is returned. For example, And(x, y) is logically equivalent to And(a, b) for the mapping {x: a, y:b} or {x: b, y:a}. If no such mapping exists, return False. Examples ======== >>> from sympy import SOPform, bool_map, Or, And, Not, Xor >>> from sympy.abc import w, x, y, z, a, b, c, d >>> function1 = SOPform(['x','z','y'],[[1, 0, 1], [0, 0, 1]]) >>> function2 = SOPform(['a','b','c'],[[1, 0, 1], [1, 0, 0]]) >>> bool_map(function1, function2) (And(Not(z), y), {y: a, z: b}) The results are not necessarily unique, but they are canonical. Here, ``(w, z)`` could be ``(a, d)`` or ``(d, a)``: >>> eq = Or(And(Not(y), w), And(Not(y), z), And(x, y)) >>> eq2 = Or(And(Not(c), a), And(Not(c), d), And(b, c)) >>> bool_map(eq, eq2) (Or(And(Not(y), w), And(Not(y), z), And(x, y)), {w: a, x: b, y: c, z: d}) >>> eq = And(Xor(a, b), c, And(c,d)) >>> bool_map(eq, eq.subs(c, x)) (And(Or(Not(a), Not(b)), Or(a, b), c, d), {a: a, b: b, c: d, d: x}) """ def match(function1, function2): """Return the mapping that equates variables between two simplified boolean expressions if possible. By "simplified" we mean that a function has been denested and is either an And (or an Or) whose arguments are either symbols (x), negated symbols (Not(x)), or Or (or an And) whose arguments are only symbols or negated symbols. For example, And(x, Not(y), Or(w, Not(z))). Basic.match is not robust enough (see issue 1736) so this is a workaround that is valid for simplified boolean expressions """ # do some quick checks if function1.__class__ != function2.__class__: return None if len(function1.args) != len(function2.args): return None if function1.is_Symbol: return {function1: function2} # get the fingerprint dictionaries f1 = _finger(function1) f2 = _finger(function2) # more quick checks if len(f1) != len(f2): return False # assemble the match dictionary if possible matchdict = {} for k in f1.keys(): if k not in f2: return False if len(f1[k]) != len(f2[k]): return False for i, x in enumerate(f1[k]): matchdict[x] = f2[k][i] return matchdict a = simplify_logic(bool1) b = simplify_logic(bool2) m = match(a, b) if m: return a, m return m is not None
@deprecated( useinstead="bool_map", issue=4098, deprecated_since_version="0.7.4") def bool_equal(bool1, bool2, info=False): """Return True if the two expressions represent the same logical behaviour for some correspondence between the variables of each (which may be different). For example, And(x, y) is logically equivalent to And(a, b) for {x: a, y: b} (or vice versa). If the mapping is desired, then set ``info`` to True and the simplified form of the functions and mapping of variables will be returned. """ mapping = bool_map(bool1, bool2) if not mapping: return False if info: return mapping return True